A Fuzzy Clustering Model for Fuzzy Data with Outliers

نویسندگان

  • Mohammad Hossein Fazel Zarandi
  • Zahra S. Razaee
چکیده

This paper proposes a fuzzy clustering model for fuzzy data with outliers. The model is based on Wasserstein distance between interval valued data, which is generalized to fuzzy data. In addition, Keller’s approach is used to identify outliers and reduce their influences. The authors also define a transformation to change the distance to the Euclidean distance. With the help of this approach, the problem of fuzzy clustering of fuzzy data is reduced to fuzzy clustering of crisp data. In order to show the performance of the proposed clustering algorithm, two simulation experiments are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Extension of FCMdd-based Linear Clustering for Relational Data using Alternative c -Means Criterion

Relational clustering is an extension of clustering for relational data. Fuzzy c-Medoids (FCMdd) based linear fuzzy clustering extracts intrinsic local linear substructures from relational data. However this linear clustering was affected by noise or outliers because of using Euclidean distance. Alternative Fuzzy c-Means (AFCM) is an extension of Fuzzy c-means, in which a modified distance meas...

متن کامل

A robust least squares fuzzy regression model based on kernel function

In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...

متن کامل

Fuzzy Robust Regression Analysis with Fuzzy Response Variable and Fuzzy Parameters Based on the Ranking of Fuzzy Sets

‎Robust regression is an appropriate alternative for ordinal regression when outliers exist in a given data set‎. ‎If we have fuzzy observations‎, ‎using ordinal regression methods can't model them; In this case‎, ‎using fuzzy regression is a good method‎. ‎When observations are fuzzy and there are outliers in the data sets‎, ‎using robust fuzzy regression methods are appropriate alternatives‎....

متن کامل

Robust TSK fuzzy modeling for function approximation with outliers

The Takagi–Sugeno–Kang (TSK) type of fuzzy models has attracted a great attention of the fuzzy modeling community due to their good performance in various applications. Various approaches for modeling TSK fuzzy rules have been proposed in the literature. Most of them define their fuzzy subspaces based on the idea of training data being close enough instead of having similar functions. Besides, ...

متن کامل

Detecting Effectiveness of Outliers and Noisy Data on Fuzzy System Using FCM

Fuzzy systems which are an artificial intelligent technique are applicable for controlling and decision support systems. Fuzzy systems are created using membership functions (MFs) which modeled based on dataset. Therefore, there is relation between uncertainty of input data and fuzziness expressed by MFs. Outliers and noisy data are kinds of uncertainty which affect on membership function. Thus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJFSA

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2011